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Fourier optics provides a description of the propagation of light waves based on 
harmonic analysis (the Fourier transform) and linear systems. The methods of har- 
monic analysis have proven to be useful in describing signals and systems in many 
disciplines. Harmonic analysis is based on the expansion of an arbitrary function of 
time f(t) as a superposition (a sum or an integral) of harmonic functions of time of 
different frequencies (see Appendix A, Sec. A.l). The harmonic function 
F(v)exp(j2rrvt), which has frequency v and complex amplitude F(v), is the building 
block of the theory. Several of these functions, each with its own value of F(v), are 
added to construct the function f(t), as illustrated in Fig. 4.0-l. The complex ampli- 
tude F(v), as a function of frequency, is called the Fourier transform of f(t). This 
approach is useful for the description of linear systems (see Appendix B, Sec. B.l). If 
the response of the system to each harmonic function is known, the response to an 
arbitrary input function is readily determined by the use of harmonic analysis at the 
input and superposition at the output. 

An arbitrary function f<x, y) of the two variables x and y, representing the spatial 
coordinates in a plane, may similarly be written as a superposition of harmonic 
functions of x and y of the form F(vX, v,)exp[ -j277(v,x + boy)], where F(v,, v,,) is 
the complex amplitude and vX and vy are the spatial frequencies (cycles per unit 
length; typically cycles/mm) in the x and y directions, respectively.+ The harmonic 
function F(v,, v,,) exp[ -j2rr(v,x + v,y)] is the two-dimensional building block of the 
theory. It can be used to generate an arbitrary function of two variables f<x, y), as 
illustrated in Fig. 4.0-2 (see Appendix A, Sec. A.3). 

The plane wave U(x, y, z) = A exp[ -j(k,x + k,y + k,z)] plays an important role 
in wave optics. The coefficients (k,, k,, k,) are components of the wavevector k and A 
is a complex constant. At points in an arbitrary plane, U(x, y, 2) is a spatial har- 
monic function. In the z = 0 plane, for example, U(x, y, 0) is the harmonic function 
f(x, y) = A exp[-j2 ( 7~ vXx + ~,y)], where uX = k,/2r and yY = k,/2r are the spa- 
tial frequencies (cycles/mm) and k, and k, are the spatial angular frequencies 
(radians/mm). There is a one-to-one correspondence between the plane wave U(x, y, z) 
and the spatial harmonic function f(x, y) = U(X, y, 0), provided that the spatial 
frequency does not exceed the inverse wavelength l/A. Since an arbitrary function 
f(nc,y) can be analyzed as a superposition of harmonic functions, an arbitrary traveling 

Figure 4.0-l An arbitrary function f(t) may 
different frequencies and complex amplitudes. 

be analyzed as a sum of harmonic functions of 

‘The spatial harmonic function is defined with a minus sign in the exponent, in contrast to the plus sign 
used in the definition of the temporal harmonic function (see Appendix A, Sec. A.3). These signs match 
those of a forward-traveling plane wave. 

109 



110 FOURIER OPTICS 

Figure 4.0-2 An arbitrary function f(x, y) may be analyzed 
different spatial frequencies and complex amplitudes. 

as a sum of harmonic functions of 

Figure 4.0-3 The principle of Fourier optics: 
an arbitrary wave in free space can be analyzed 
as a superposition of plane waves. 

wave U(x, y, z) may be analyzed as a sum of plane waves (Fig. 4.0-3). The plane wave 
is the building block used to construct a wave of arbitrary complexity. Furthermore, if it 
is known how a linear optical system modifies plane waves, the principle of superposi- 
tion can be used to determine the effect of the system on an arbitrary wave. 

Because of the important role Fourier analysis plays in describing linear systems, it 
is useful to describe the propagation of light through linear optical components, 
including free space, using a linear-system approach. The complex amplitudes in two 
planes normal to the optic (z) axis are regarded as the input and output of the system 
(Fig. 4.0-4). A 1 inear system may be characterized by either its impulse-response 
function (the response of the system to an impulse, or a point, at the input) or by its 
transfer function (the response to spatial harmonic functions), as described in Ap- 
pendix B. 

The chapter begins with a Fourier description of the propagation of light in free 
space (Sec. 4.1). The transfer function and impulse-response function of the free-space 

Figure 4.0-4 
an-input plane z= 0 and an output plane z = d. This is regarded as a linear system whose 
and output are the functions f(x, y  > = U(x, y, 0) and g(x, y) = U(x, y, d), respectively. 

input 
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propagation system are determined. In Sec. 4.2 we show that a lens may perform the 
operation of the spatial Fourier transform. The transmission of light through apertures 
is discussed in Sec. 4.3; this is a Fourier-optics approach to the diffraction of light. 
Section 4.4 is devoted to image formation and spatial filtering. Finally, an introduction 
to holography, the recording and reconstruction of optical waves, is presented in Sec. 
4.5. Knowledge of the basic properties of the Fourier transform and linear systems in 
one and two dimensions (reviewed in Appendices A and B) is necessary for under- 
standing this chapter. 

4.1 PROPAGATION OF LIGHT IN FREE SPACE 

A. Correspondence Between the Spatial Harmonic Function and the 
Plane Wave 

Consider a plane wave of complex amplitude U(x, y, z) = A exp[ -j(k,x + k y + k,z)] 
with wavevector k = (k,, k,, k,), wavelength A, wavenumber k = (k: + iz + k$)li2 
= 27~/h, and complex envelope A. The vector k makes angles Ox = sin-‘(k,/k) and 
8, = sin-‘(k,/k) with the y-z and X-Z planes, respectively, as illustrated in Fig. 4.1-1. 
The complex amplitude in the z = 0 plane, U(X, y, 0), is a spatial harmonic function 
fk y) = A exp[ 32 r V~‘XX + v,y)] with spatial frequencies vX = k,/2r and vy = ( 
k,/2r (cycles/mm). The angles of the wavevector are therefore related to the spatial 
frequencies of the harmonic function by 

0, = sin-l hv, 

8, = sin-’ Av,. 

I 

(4.1-1) 
Correspondence Between 

Spatial Frequencies and 
Angles 

Recognizing AX = 1/ V, and A, = l/v, as the periods of the harmonic function in 
the x and y directions, we see that the angles 0, = sin-‘(h/R,) and 8, = sin-‘(h/n,) 
are governed by the ratios of the wavelength of light to the period of the harmonic 
function in each direction. These geometrical relations follow from matching the 
wavefronts of the wave to the periodic pattern of the harmonic function in the z = 0 
plane, as illustrated in Fig. 4.1-1. 

Figure 4.1-1 A harmonic function of spatial frequencies v, and v,, at the plane 
consistent with a plane wave traveling at angles 0, = sin-’ Au, and 6, = sin- ’ Au,. 

z=O is 
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If k, -=c k and k, K k, so that the wavevector k is paraxial, the angles 19, and 19, 
are small (sin OX = 8, and sin 8, = 0,) and 

%Y = Au, 
El 8, = Au,. (4.1-2) (4.1-2) 

Spatial Frequencies and Angles Spatial Frequencies and Angles 
(Paraxial Approximation) (Paraxial Approximation) 

Thus the angles of inclination of the wavevector are directly proportional to the spatial Thus the angles of inclination of the wavevector are directly proportional to the spatial 
frequencies of the corresponding harmonic function. frequencies of the corresponding harmonic function. 

Apparently, there is a one-to-one correspondence between the plane wave U(x, y, z) Apparently, there is a one-to-one correspondence between the plane wave U(x, y, z) 
and the harmonic function f(x, y). Given one, the other can be readily determined (if and the harmonic function f(x, y). Given one, the other can be readily determined (if 
the wavelength A is known). Given the wave U(x, y, z), the harmonic function f(x, y) the wavelength A is known). Given the wave U(x, y, z), the harmonic function f(x, y) 
is obtained by sampling in the z = 0 plane, f(x, y) = U(x, y, 0). Given the harmonic is obtained by sampling in the z = 0 plane, f(x, y) = U(x, y, 0). Given the harmonic 
function f<x, y), on the other hand, the wave U(x, y, z) is constructed by using the function f<x, y), on the other hand, the wave U(x, y, z) is constructed by using the 
relation U(X, y, z) = f(x, y)exp(-jk,z) with relation U(X, y, z) = f(x, y)exp(-jk,z) with 

k, = f(k2 - k,2 - k$12, k, = f(k2 - k,2 - k$12, k = 27r/h. k = 27r/h. (4.1-3) (4.1-3) 

A condition of validity of this correspondence is that kz + kz < k2, so that k, is A condition of validity of this correspondence is that kz + kz < k2, so that k, is 
real. This condition implies that hv, < 1 and Au,, < 1, so that the angles 0, and 8, real. This condition implies that hv, < 1 and Au,, < 1, so that the angles 0, and 8, 
defined by (4.1-l) exist. The + and - signs in (4.1-3) represent waves traveling in the defined by (4.1-l) exist. The + and - signs in (4.1-3) represent waves traveling in the 
forward and backward directions, respectively. We shall be concerned with forward forward and backward directions, respectively. We shall be concerned with forward 
waves only. waves only. 

Spatial Spectral Analysis Spatial Spectral Analysis 
When a plane wave of unity amplitude traveling in the z direction is transmitted When a plane wave of unity amplitude traveling in the z direction is transmitted 
through a thin optical element with complex amplitude transmittance f(x, y) = through a thin optical element with complex amplitude transmittance f(x, y) = 
exp[ -j2rr(v,x + v y)] exp[ -j2rr(v,x + v y)] 
U(x, y, 0) = j-(x, yr: U(x, y, 0) = j-(x, yr: 

the the wave is modulated by the harmonic function, so that wave is modulated by the harmonic function, so that 
Th Th e e incident wave is then converted into a plane wave with a incident wave is then converted into a plane wave with a 

wavevector at angles 8, = sin-’ Au, and eY = sin-’ Au, (see Fig. 4.1-2). The optical wavevector at angles 8, = sin-’ Au, and eY = sin-’ Au, (see Fig. 4.1-2). The optical 
element is a diffraction grating which acts like a prism (see Exercise 2.4-5). element is a diffraction grating which acts like a prism (see Exercise 2.4-5). 

If the transmittance of the optical element f(x, y) is the sum of several harmonic If the transmittance of the optical element f(x, y) is the sum of several harmonic 
functions of different spatial frequencies, the transmitted optical wave is also the sum functions of different spatial frequencies, the transmitted optical wave is also the sum 
of an equal number of plane waves dispersed into different directions; each spatial of an equal number of plane waves dispersed into different directions; each spatial 
frequency is mapped into a corresponding direction, in accordance with (4.1-1). The frequency is mapped into a corresponding direction, in accordance with (4.1-1). The 

Figure 4.1-2 A thin element whose amplitude transmittance is a harmonic function of spatial 
frequency vx (period Ax = l/v,> bends a plane wave of wavelength A by an angle Ox = sin-l Av, 
= sin-‘(A/A,). 
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Figure 4.1-3 A thin optical element of ampli- 
tude transmittance f(x, y) decomposes an inci- 
dent plane wave into many plane waves. The 
plane wave traveling at the angles 0, = sin-’ Av, 
and 8, = sin-’ A”,, has a complex envelope 
F(v,, vY), the Fourier transform of f(x, y). 

amplitude of each wave is proportional to the amplitude of the corresponding har- 
monic component of f(x, Y ). 

More generally, if f(x, y) is a superposition integral of harmonic functions, 

with frequencies (v,, v,) and amplitudes 
the superposition of plane waves, 

Flux, vJ, the transmitted wave 

U(x, y, z) = // F(v,, v,) exp[ -j(2rv,x + 27-~~y)] exp( -jk,z) dv, dvyr 
--oo 

with complex envelopes F(v,, v,,), where k, = (k2 - kz - kcj1j2 = 27r(1/h2 - vz - 
v2)li2. Note that F(vx, 
Sk. A.3). 

v,) is the Fourier transform of f(x, y) (see Appendix A, 

Since an arbitrary function may be Fourier analyzed as a superposition integral of 
the form (4.1-4), the light transmitted through a thin optical element of arbitrary 
transmittance may be written as a superposition of plane waves (see Fig. 4.1-3), 
provided that vj + vz < l/h2. This process of “spatial spectral analysis” is akin to the 
angular dispersion of different temporal-frequency components (wavelengths) provided 
by a prism. Free-space propagation serves as a natural “spatial prism,” sensitive to the 
spatial instead of the temporal frequencies of the optical wave. 

Amplitude Modulation 
Consider a transparency with complex amplitude transmittance f,,(x, y). If the Fourier 
transform F,(v,, v,,) extends over widths f AvX and f Au, in the x and y directions, 
the transparency will deflect an incident plane wave by angles 8, and 8, in the range 
f sin- ‘(A Au,) and f sin- ‘(h Au,), respectively. 

Consider a second transparency of complex amplitude transmittance f(x, y) = 
fob, y) exp[-j2 ( 7r vX,,x + v,a y )], where fO( x, y) is slowly varying compared to 
exp[ -j2&,ax + vYOy)] so that AvX K vXo and Au, < vyo. We may regard f(x, y) as 
an amplitude-modulated function with a carrier frequency vXo and vyo and modulation 
function fo(x, y). The Fourier transform of f(x, y) is F,(v, - vXo, vY - vyo), in accor- 
dance with the frequency-shifting property of the Fourier transform (see Appendix A). 
The transparency will deflect a plane wave to directions centered about the angles 
t9,, = sin -‘hv,, and 8,0 = sin-l hvyO (Fig. 4.1-4). This can also be readily seen by 
regarding f(x, y) as a transparency of transmittance fo(x, y) in contact with a grating 
or prism of transmittance exp[ -j2r(vXox + v,,~Y)] that provides the angular deflection 
8,, and eYo. 
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fo(“s Y) I& y)ew(-j2n~,gx) 

Figure 4.1-4 Deflection of light by the transparencies fo(x, y) and fo(x, y)exp(-j2rvXox). 
The “carrier” harmonic function exp( -j2rvXOx) acts as a prism that deflects the wave by an 
angle f3,, = sin - ’ hv,,. 

This idea may be used to record two images f&x, y) and f2(x, y) on the 
same transparency using the spatial-frequency multiplexing scheme f  (x, y  ) = 
f  1(x, Y) ew[ -9 T vxlx + vyly)] + f2(x, y)exp[-j27r(VX2X + v,,&l. The two images ( 
may be easily separated by illuminating the transparency with a plane wave, whereupon 
the two images are deflected at different angles and are thus separated. This principle 
will prove useful in holography (Sec. 4.5), where it is often desired to separate two 
images recorded on the same transparency. 

Frequency Modulation 
We now examine the transmission of a plane wave through a transparency made of a 
“collage” of several regions, the transmittance of each of which is a harmonic function 
of some spatial frequency, as illustrated in Fig. 4.1-5. If the dimensions of each region 
are much greater than the period, each region acts as a grating or a prism that deflects 
the wave in some direction, so that different portions of the incident wavefront are 
deflected into different directions. This principle may be used to create maps of optical 
interconnections, which may be used in optical computing applications, as described in 
Sec. 21.5. 

A transparency may also have a harmonic transmittance with a spatial frequency 
that varies continuously and slowly with position (in comparison with A), much as the 
frequency of a frequency-modulated (FM) signal varies slowly with time. Consider, for 
example, the phase function f(x, y) = exp[ -j2r+(x, y)], where 4(x, y) is a continu- 
ous slowly varying function of x and y. In the neighborhood of a point (x0, ya), we may 
use the Taylor’s series expansion 4(x, y) = 4(x,, yO) + (X - xO)vX + (y - y&,,, 
where the derivatives vX = +/ax and vY = d+/Jy are evaluated at the position 
(x0, ya). The local variation of f(x, y) with x and y is therefore proportional to the 
quantity exp[ -j2rr(v,x + V, y)], which is a harmonic function with spatial frequencies 

Figure 4.1-5 Deflection of light by a trans- 
parency made of several harmonic functions 
(phase gratings) of different spatial frequencies. 
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“x = ~@/ax and vy = @/dy. Since the derivatives 84/8x and @/ay vary with x and 
y, so do the spatial frequencies. The transparency f(x, y) = exp[ -j2~4(x, y)] there- 
fore deflects the portion of the wave at the position (x, y) by the position-dependent 
angles 8, = sin -‘(A a4/ax) and 19, = sin-‘(A &#1/8y). 

EXAMPLE 4.1-l. Scanning. A thin transparency with complex amplitude transmit- 
tance f(x, y) = exp(jrx2/Af) introduces a phase shift 2r+(x, y) where 4(x, y) = 
-x2/2hf, so that the wave is deflected at the position (x, y) by the angles 8, = 
sin-VA a@/ax) = sin-’ (-x/f) and 19, = 0. If  Ix/f] GC 1, 8, = --x/f and the deflection 
angle 8, is directly proportional to the transverse distance X. This transparency may be 
used to deflect a narrow beam of light. I f  the transparency is moved at a uniform speed, 
the beam is deflected by a linearly increasing angle as illustrated in Fig. 4.1-6. 

Figure 4.1-6 Using a frequency-modulated transparency to scan an optical beam. 

EXAMPLE 4.1-2. haging. If  the transparency in Example 4.1-1 is illuminated by a 
plane wave, each part of the wave is deflected by a different angle and as a result the 
wavefront is altered. The local wavevector at position x bends by an angle -x/f so that all 
wavevectors meet at a single point on the optical axis a distance f  from the transparency, 
as illustrated in Fig. 4.1-7. The transparency acts as a cylindrical lens with focal length f. 
Similarly, a transparency with the transmittance f(x, y) = exp[ jr(x2 + y2)/hf] acts as a 

Figure 4.1-7 A transparency with transmittance f(x, y) = exp( jrrx2/Af) bends the 
wave at position x by an angle 8, = -x/f so that it acts as a cylindrical lens with focal 
length f. 
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spherical lens with focal 
thin lens [see (2.4-6)]. 

length f. Indeed, this is the expression for the transmittance of a 

EXERCISE 4.1- 1 

The Fresnel Zone Plate 

(a) Use harmonic analysis near 
amplitude transmittance 

the position x to show that a transparency with complex 

\O, otherwise 

acts as a cylindrical lens with multiple focal lengths. 
(b) A circularly symmetric transparency of complex amplitude transmittance 

f(x,yj = [l, ifcos(7$$) > 0 

\O. otherwise 

is known as a Fresnel zone 
with multiple focal lengths. 

plate (see Fig. 4.1-8). Show that it acts as a spherical lens 

B. Transfer Function of Free Space 

We now examine the propagation of a monochromatic optical wave of wavelength h 
and complex amplitude U(x, y, z) in the free space between the planes z = 0 and 
z = d, called the input and output planes, respectively (see Fig. 4.1-9). Given the 
complex amplitude of the wave at the input plane, f(x, y) = U(x, y, 0), we shall 
determine the complex amplitude at the output plane, g(x, y) = U(x, y, d). 

We regard f(x, y) and g(x, y) as the input and output of a linear system. The 
system is linear since the Helmholtz equation, which U(x, y, z) must satisfy, is linear. 
The system is shift-invariant because of the invariance of free space to displacement of 
the coordinate system. A linear shift-invariant system is characterized by its impulse 
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h 
x 

Figure 4.1-9 Propagation of light between two planes is regarded as a linear system whose 
input and output are the complex amplitudes of the wave in the two planes. 

response function h(x, y) or by its transfer function X(V,, vJ, as explained in Ap- 
pendix B, Sec. B.2. We now proceed to determine expressions for these functions. 

The transfer function X(V,, vY) is the factor by which an input spatial harmonic 
function of frequencies vX and vY is multiplied to yield the output harmonic function. 
We therefore consider a harmonic input function f(x, y) = A exp[ -j27r(v,x + v,y)]. 
As explained earlier, this corresponds to a plane wave U(X, y, z) = A exp[ -j(k,x + 
k,y + k,z)] where k, = 27ru,, k, = 27r~,,, and 

l/2 
. (4.1-5) 

The output g(x, y) = A exp[ -j(k,x + k,y + k,d)l, so that we can write xb,, vY) = 
Id& Y)/fk Y) = exp( - jk,d), from which 

The transfer function X(vX, v,) is therefore a circularly symmetric complex function of 
the spatial frequencies vX and vY. Its magnitude and phase are sketched in Fig. 4.1-10. 

For spatial frequencies for which V: + V; I l/A2 (i.e., frequencies lying within a 
circle of radius l/A) the magnitude \X(Y~, v,)] = 1 and the phase arg{X(Y,, Y,)} is a 
function of vX and vY. A harmonic function with such frequencies therefore undergoes 
a spatial phase shift as it propagates, but its magnitude is not altered. 

At higher spatial frequencies, vz + V; > l/A2, the quantity under the square root in 
($1-6) is negative so that the exponent is real and the transfer function exp[ -2r(vz + 

vY - 1/A2)1/2d] represents an attenuation factor. t The wave is then called an evanes- 

cent wave. When v,, = (v,’ + v;)lj2 exceeds l/A slightly, i.e., v,, = l/A, the attenuation 
factor is exp[ -2&i - 1/A2>1/2d] = exp[ -2r(v, - l/A)1/2(~,, + 1/A)1/2d] = 
exp[ - 2r(v, - 1/A)1’2(2d2/A)‘/2], 
A/2d2, or (vp - l/A)/(l/A) = 

which equals exp(-2r) when (vP - l/A) = 
i(A/d)2. For d z+ A the attenuation factor drops 

sharply when the spatial frequency slightly exceeds l/A, as illustrated in Fig. 4.1-10. 

‘The - sign in (4.1-3) was used since the + sign would have resulted in an exponentially growing 
function, which is physically unacceptable. 
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Figure 4.1-10 Magnitude and phase of the transfer function X(v,, v,,) for free-space propaga- 
tion between two planes separated by a distance d. 

We may therefore regard l/h as the cutoff spatial frequency (the spatial bandwidth) of 
the system. Thus 

the spatial bandwidth of light propagation 
in free space is approximately I/A cycles/mm. 

Features contained in spatial frequencies greater than l/A (corresponding to details of 
size finer than A) cannot be transmitted by an optical wave of wavelength A over 
distances much greater than A. 

Fresnel Approximation 
The expression for the transfer function in (4.1-6) may be simplified if the input 
function f(x, y) contains only spatial frequencies that are much smaller than the cutoff 
frequency l/A, so that VT + vz < l/A2. The plane-wave components of the propagat- 
ing light then make small angles 0, = Au, and 8, = Au, corresponding to paraxial rays. 

Denoting 19~ = 8,2 + 0; 
phase factor in (4.1-6) is 

= A2(vj + vz), where 8 is the angle with the optical axis, the 

l/2 
d = 277;cl - e2)1’2 

e2 e4 
44 lPTfs -... 

( I 
. (4.1-7) 

Neglecting the third and higher terms of this expansion, (4.1-6) may be approximated 
by 

wG7 vy> = X, exp[ jrAd(v: + v;)] , (4.1-8) 
Transfer Function 

of Free Space 
(Fresnel Approximation) 
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Figure 4.1-11 The transfer function of free-space propagation for low spatial 
(much less than l/h cycles/mm) has a constant magnitude and a quadratic phase. 

frequencies 

where X, = exp( -jkd). In this approximation, the phase is a quadratic function of vX 
and Y,,, as illustrated in Fig. 4.1-11. This approximation is known as the Fresnel 
approximation. 

The condition of validity of the Fresnel approximation is that the third term in 
(4.1-7) is much smaller than 7~ for all 8. This is equivalent to 

If a is the largest radial distance in 
(4.1-9) may be written in the form 

e4ci 
- -K 1. 
4A 

the output plane, the largest angle %l = a/d, and 

(4.1-9) 

(4.1-10) 
Condition of Validity of 
Fresnel Approximation 

where N, = a2/Ad is the Fresnel number. For example, if a = 1 cm, d = 100 cm, and 
A = 0.5 pm, then 8, = 10e2 radian, NF = 200, and N,e2/4 = 5 X 10m3. In this case .._ 
the Fresnel approximation is applicable: 

Input - Output Relation 
Given the input function f(x, y), the output function g(x, y) may be determined as 
follows: (1) We determine the Fourier transform 

F(v,,v,) = (4.1-11) 
--oo 

which represents the complex envelopes of the plane-wave components in the input 
plane; (2) the product X(V,, v,)Fb,, Y ) gives the complex envelopes of the plane-wave 
components in the output plane; and 3) the complex amplitude in the output plane is z 
the sum of the contributions of these plane waves, 
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Using the Fresnel approximation for X’(V,, yY), which is given by (4.1-g), we have 

(4.1-12) 

Equations (4.1-12) and (4.1-11) serve to relate the output function g(x, y) to the input 
function f(x, y). 

C. Impulse-Response Function of Free Space 

The impulse-response function h(x, y) of the system of free-space propagation is the 
response g(x, y) when the input f(x, y) is a point at the origin (0,O). It is the inverse 
Fourier transform of the transfer function X(V,, vY>. Using Sec. A.3 and Table A.l-1 in 
Appendix A and k = 27r/A, the inverse Fourier transform of (4.1-8) is 

where ho = (j/h& exp( -jkd). This function is proportional to the complex ampli- 
tude at the z = d plane of a parabolodial wave centered about the origin (0,O) [see 
(2.2-16)]. Thus each point in the input plane generates a paraboloidal wave; all such 
waves are superposed at the output plane. 

Free-Space Propagation as a Convolution 
An alternative procedure for relating the complex amplitudes f(~, y) and g(x, y) is 
to regard f(x, y) as a superposition of different points (delta functions), each produc- 
ing a paraboloidal wave. The wave originating at the point (x’, y’) has an amplitude 
fW, Y’> and is centered about (x’, y’) so that it generates a wave with amplitude 
f(x), y’)h(x - x’, y - y’) at the point (x, y) in the output plane. The sum of these 
contributions is the two-dimensional convolution 

d-G Y> = j-7 f( x’, y’)h( x - X’, y - y’) dx’ dy’, 
--co 

which, in the Fresnel approximation, becomes 

m 

g(x, Y) = ho lJ f(-C ~‘)exp 
(x - q2 + (Y - Y,12 

hd 1 ,,,,, , -co (4.1-14) 

where ho = (j/hd)exp(-jkd). 
In summary: Within the Fresnel approximation, there are two approaches to 

determining the complex amplitude g(x, y) in the output plane, given the complex 
amplitude f(x, y) in the input plane: (1) Equation (4.1-14) is based on a space-domain 
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Figure 
wave. 

Wavefront 

4.1-12 The Huygens-Fresnel principle. Each point on a wavefront generates a spherical 

approach in which the input wave is expanded in terms of paraboloidal elementary 
waves; and (2) Equation (4.1-12) is a frequency-domain approach in which the input 
wave is expanded as a sum of plane waves. 

EXERCISE 4.1-2 

Gaussian Beams Revisited. If the function f( X, y) = A exp[ -(x2 + y2)/Wt] repre- 
sents the complex amplitude of an optical wave U(x, y, .z> in the plane z = 0, show that 
U(X, y, z) is the Gaussian beam discussed in Chap. 3, (3.1-7). Use both the space- and 
frequency-domain methods. 

Huygens - Fresnel Principle 
The Huygens-Fresnel principle states that each point on a wavefront generates a 
spherical wave (Fig. 4.1-12). The envelope of these secondary waves constitutes a new 
wavefront. Their superposition constitutes the wave in another plane. The system’s 
impulse-response function for propagation between the planes z = 0 and z = d is 

h(x, y) a 5 exp( -jkr), r= (X2+y2+d2)“2. (4.1-15) 

In the paraxial approximation, the spherical wave given by (4.1-15) is approximated 
by the paraboloidal wave in (4.1-13) (see Sec. 2.2B). Our derivation of the impulse 
response function is therefore consistent with the Huygens-Fresnel principle. 

4.2 OPTICAL FOURIER TRANSFORM 

As has been shown in Sec. 4.1, the propagation of light in free space is described 
conveniently by Fourier analysis. If the complex amplitude of a monochromatic wave of 
wavelength A in the z = 0 plane is a function f(x, y) composed of harmonic compo- 
nents of different spatial frequencies, each harmonic component corresponds to a 
plane wave: The plane wave traveling at angles 8, = sin-’ Au,, 8, = sin-l Au, corre- 
sponds to the components with spatial frequencies vX and vY and has an amplitude 
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Fb,, vJ, the Fourier transform of f(x, y). This suggests that light can be used to 
compute the Fourier transform of a two-dimensional function f(x, y), simply by 
making a transparency with amplitude transmittance f(x, y) through which a uniform 
plane wave of unity magnitude is transmitted. 

Because each of the plane waves has an infinite extent and therefore overlaps with 
the other plane waves, however, it is necessary to find a method of separating these 
waves. It will be shown that at a sufficiently long distance, only a single plane wave 
contributes to the total amplitude at each point in the output plane, so that the Fourier 
components are eventually separated naturally. A more practical approach is to use a 
lens to focus each of the plane waves into a single point. 

A. Fourier Transform in the Far Field 

We now proceed to show that if the propagation distance d is sufficiently long, the only 
plane wave that contributes to the complex amplitude at a point (x, y) in the output 
plane is the wave with direction making angles 8, = x/d and 0, =: y/d with the optical 
axis (see Fig. 4.2-l). This is the wave with wavevector components k, = (x/d)k and 

kJJ = (y/d)k and amplitude F(v,, vY) with vX = x/Ad, and vY = y/Ad. The complex 
amplitudes g(x, y) and f(x, y) of the wave at the z = d and z = 0 planes are re- 
lated by 

where F(v,,v,) is the Fourier transform of f(x, y) and ho = (j/Ad)exp(-jkd). 
Contributions of all other waves cancel out as a result of destructive interference. This 
approximation is known as the Fraunhofer approximation. Two proofs of (4.2-l) are 
provided. 

Figure 4.2-l When the distance d is sufficiently long, the complex amplitude at point (x, y) in 
the z = d plane is proportional to the complex amplitude of the plane-wave component with 
angles 8, = x/d = Av, and tIY = y/d = hvy, i.e., to the Fourier transform F(v,, vY> of f(x, y>, 
with v, = x/Ad and vY = y/Ad. 
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Proof 1. We begin with the relation between g(x, y) and f(x, y) in (4.1-14). The phase 
in the argument of the exponent is (rr/hd)[(x - x’j2 + (y - y’j2] = (r/AcY>[(x2 + y2) 
+ (x’~ + Y’~) - 2(x.x’ + yy’)]. If f(x, y) is confined to a small area of radius b, and if 
the distance d is sufficiently large so that the Fresnel number Nb = b2/Ad is small, 

(4.2-2) 
Condition of Validity 

of Fraunhofer Approximation 

then the phase factor (rr/Ad)(~‘~ + Y’~) I r(b2/Ad) is negligible and (4.1-14) may be 
approximated by 

&x7 Y> = how ( -jr%) i f(x’, y’) exp( j2~U’~yy’) &‘dy’. (4.2-3) 

The factors x/Ad 
uy = y/hd, so that 

and y/Ad may be regarded as the frequencies Vx =x/Ad and 

gk Y) = h+p -jr ( $$)f( $7 $), (4.2-4) 

where F(v,, vY) is the Fourier transform of f(x, y). The phase factor given by 
exp[ -j71-(x2 + y2)/Ad] in (4.2-4) may also be neglected and (4.2-l) obtained if we also 
limit our interest to points in the output plane within a circle of radius a centered 
about the z-axis so that &x2 + y2)/hd 5 ra2/hd +C 7~. This is applicable when the 
Fresnel number N, = a2/hd s 1. 

The Fraunhofer approximation is therefore valid whenever the Fresnel numbers N, 
and NL are small. The Fraunhofer approximation is more difficult to satisfy than the 
Fresnel approximation, which requires that N,Bi/4 K 1 [see (4.1-lo)]. Since Bm -=z 1 
in the paraxial approximation, it is possible to satisfy the Fresnel condition N,t9;/4 K 1 
for Fresnel numbers N, not necessarily -=x 1. 

EXERCISE 4.2- 1 

Conditions of Validity of the Fresnel and Fraunhofer Approximations: A Compari- 
son. Demonstrate that the Fraunhofer approximation is more restrictive than the 
Fresnel approximation by taking A = 0.5 pm, assuming that the object points (x, y) lie 
within a circle of radius b = 1 cm, and determining the range of distances d for which the 
two approximations are applicable. 
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*Proof 2. The complex amplitude g(nc, y) in (4.1-12) is expressed as an integral of 
plane waves of different frequencies. If d is sufficiently large so that the phase in the 
integrand is much greater than 277, it can be shown using the method of stationary 
phase+ that only one value of vX contributes to the integral. This is the value for which 
the derivative of the phase 7rh dv: - 27~v,x with respect to vX vanishes; i.e., uX = 
x/Ad. Similarly, the only value of vY that contributes to the integral is zlY = y/Ad. This 
proves the assertion that only one plane wave contributes to the far field at a given 
point. 

B. Fourier Transform Using a Lens 

The plane-wave components that constitute a wave may also be separated by use of a 
lens. A thin spherical lens transforms a plane wave into a paraboloidal wave focused to 
a point in the lens focal plane (see Sec. 2.4 and Exercise 2.4-3). If the plane wave 
arrives at small angles 0, and 8,, the paraboloidal wave is centered about the point 
@f, e,f ), where f is the focal length (see Fig. 4.2-2). The lens therefore maps each 
direction (0,, 0,,> into a single point (e,f, e,f> in the focal plane and thus separates the 
contributions of the different plane waves. 

In reference to the optical system shown in Fig. 4.2-3, let f(x, y) be the complex 
amplitude of the optical wave in the z = 0 plane. Light is decomposed into plane 
waves, with the wave traveling at small angles 8, = hv, and e,, = hv,, having a complex 
amplitude proportional to the Fourier transform F(v,, v,,). This wave is focused by the 
lens into a point (x, y) in the focal plane where x = 0,f = Af vX, y = Oyf = Af v,,. The 
complex amplitude at point (x, y) in the output plane is therefore proportional to the 
Fourier transform of f(~, y) evaluated at V, = x/hf and v,, = y/hf, so that 

To determine the proportionality factor in (4.2-5), we analyze the input function 
f(x, y) into it s F ourier components and trace the plane wave corresponding to each 
component through the optical system. We then superpose the contributions of these 
waves at the output plane to obtain g(x, y). All these waves will be assumed to be 

Figure 4.2-2 Focusing of a plane wave into a point. A direction (e,, 0,,> is mapped into a point 
(x, y) = (e,.f, e,.f>. 

‘See, e.g., Appendix III in M. Born and E. Wolf, Principles of Optics, Pergamon Press, New York, 6th 
ed. 1980. 
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Figure 4.2-3 Focusing of the plane waves associated with the harmonic Fourier components of 
the input function f(x, y) into points in the focal plane. The amplitude of the plane wave with 
direction (f3,, eY> = (A vX, hvy) is proportional to the Fourier transform F(v,, vY) and is focused at 
the point (x, Y) = <e,f, 0,f) = (Afv,, hfv,,). 

paraxial and 
four steps. 

the Fresnel approximation will be used. The procedure takes the following 

1. The plane wave with angles 19, = Au, and 8, = hv, has a complex amplitude 
Uky,O) = Fb,, v,)exp[ -j27r(v,x + v,y)] in the z = 0 plane and U(x, y, d) = 
x(v,, v,)F(v,, v,,>exp[ -j2r(v,x + v,y)] in the z = d plane, immediately before 
crossing the lens, where x(v,, VJ = X, exp[jrrAd(vz + vz)] is the transfer func- 
tion of a distance d of free space and X, = exp( -jkd). 

2. Upon crossing the lens, the complex amplitude is multiplied by the lens phase 
factor exp[jr(x* + y*)/Af] [the phase factor exp(-jkA), where A is the width 
of the lens, has been ignored]. Thus 

U(x,y,d + A) = X,exp 

xexp[ j.?rhd(vT + v;)]~(v~,v~) exp[ -j2rr(v,x + vYy>]. 

This expression is simplified by writing - 2v,x + x*/h f = (x2 - 2v,Afi)/A f = 

Kx - x0>* - X$/Af, with x0 = hv,f; a similar relation for y is written with 
y0 = Au, f, so that 

U(x, y,d + A> = A(v,,v,,) exp jn 
(x-X0)*+ (Y -Yo12 

Af I 

) (426) 
. - 

where 

A(v,,v,J = 3C,exp[W(d -f>(vz + v,T)]~(v,,v,). (4.2-7) 

Equation (4.2-6) is recognized as the complex amplitude of a paraboloidal wave 
converging toward the point (x0, yO) in the lens focal plane, z = d + A + f. 

3. We now examine the propagation in the free space between the lens and the 
output plane to determine U(x, y, d + A + f ). We apply (4.1-14) to (4.2-61, use 
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the relation /exp[j2&x - xJx’/hf] &’ = hf8(x - x0), and obtain 

U(x,y,d + A +f) =h,(hf)2A(v,~v,)@x --@(Y -YO> 

where ho = (j/Af) exp( -jkf ). Indeed, the plane wave is focused into a single 
point at x0 = Au, f  and y, = Av,f. 

4. The last step is to integrate over all the plane waves (all vX and VJ By virtue of 
the sifting property of the delta function, 8(x - x0) = 6(x - Afv,) = (l/Af)G(v, 
- x/A f  ), this integral gives g(x, y) = h,A(x/A f, y/h f  ). Substituting from 
(4.2-7) we finally obtain 

&w> =hpp 
[ 

jr 
(X2fY2Hd-f) F y- 41_ 

hf2 I( ) Af' Af ' 
(4.2-8) 

where h, = X,h, = (j/A f) exp[ -jk(d + f  )]. Thus the coefficient of proportion- 
ality in (4.2-5) contains a phase factor that is a quadratic function of x and y. 

Since Ih,( = l/Af it follows from (4.2-8) that the optical intensity at the output 
plane is 

Ik Y) = (Af )2 +( 5, $1. (4.2-9) 

The intensity of light at the output plane (the back focal plane of the lens) is therefore 
proportional to the squared absolute value of the Fourier transform of the complex 
amplitude of the wave at the input plane, regardless of the distance d. 

The phase factor in (4.2-8) vanishes if d = f, so that 

where h, = (j/A f) exp( -j 2kf ). This geometry is shown in Fig. 4.2-4. 

(4.2-l 0) 
Fourier Transform 
Property of a Lens 

Figure 4.2-4 Fourier transform system. The Fourier component of f(x, y) with spatial frequen- 
cies vx and vY generates a plane wave at angles 9, = hv, and 8, = Av, and is focused by the lens 
to the point (x, y) = (fox,, fO,> = (hfvx, hfv,) so that g(x, y) is proportional to the Fourier 
transform F(x/hf, y/Af). 
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EXERCISE 4.2-2 

The In verse Fourier Transform. Verify that the optical system in Fig. 4.2-4 performs 
the inverse Fourier transform operation if the coordinate system in the front focal plane is 
inverted, i.e., (x, y) + c-x, - y). 

4.3 DIFFRACTION OF LIGHT 

When an optical wave is transmitted through an aperture in an opaque screen and 
travels some distance in free space, its intensity distribution is called the diffraction 
pattern. If light were treated as rays, the diffraction pattern would be a shadow of the 
aperture. Because of the wave nature of light, however, the diffraction pattern may 
deviate slightly or substantially from the aperture shadow, depending on the distance 
between the aperture and observation plane, the wavelength, and the dimensions of 
the aperture. An example is illustrated in Fig. 4.3-l. It is difficult to determine exactly 
the manner in which the screen modifies the incident wave, but the propagation in free 
space beyond the aperture is always governed by the laws described earlier in this 
chapter. 

The simplest theory of diffraction is based on the assumption that the incident wave 
is transmitted without change at points within the aperture, but is reduced to zero at 
points on the back side of the opaque part of the screen. If U(X, y) and f(x, y) are the 
complex amplitudes of the wave immediately to the left and right of the screen (Fig. 
4.3-2), then in accordance with this assumption, 

f(x, Y) = WY Y>Pk YL (4.3-l) 

Figure 4.3-l Diffraction pattern of the teeth of a saw. 
(From M. Cagnet, M. Franqon, and J. C. Thrierr, Atlas 
of Optical Phenomena, Springer-Verlag, Berlin, 1962.) 
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Aperture 

Observation 
plane 

Figure 4.3-2 A wave U(x, y> is transmitted through an aperture of amplitude transmittance 
p(x, y), generating a wave of complex amplitude f(x, y) = U(x, Y>P(X, Y). After propagation a 
distance d in free space the complex amplitude is g(x, y) and the diffraction pattern is the 
intensity Z(x, y) = Jg(x, y>12. 

where 

\ (1 inside the aperture 
PcbY,l = 

\ 
() 

, outside the aperture 
(4.3-2) 

is called the aperture function. 
Given f(x, y), the complex amplitude g(x, y) at an observation plane a distance d 

from the screen may be determined using the methods described in Sets. 4.1 and 4.2. 
The diffraction pattern 1(x, y) = Ig(x, y)12 is known as Fraunhofer diffraction or 
Fresnel diffraction, depending on whether free-space propagation is described using 
the Fraunhofer approximation or the Fresnel approximation, respectively. 

Although this approach gives reasonably accurate results in most cases, it is not 
exact. The validity and self-consistency of the assumption that the complex amplitude 
f(x, y) vanishes at points outside the aperture on the back of the screen are question- 
able since the transmitted wave propagates in all directions and reaches those points. A 
theory of diffraction based on the exact solution of the Helmholtz equation under the 
boundary conditions imposed by the aperture is mathematically difficult. Only a few 
geometrical structures have yielded exact solutions. However, different diffraction 
theories have been developed using a variety of assumptions, leading to results with 
varying accuracies. Rigorous diffraction theory is beyond the scope of this book. 

A. Fraunhofer Diffraction 

Fraunhofer diffraction is the theory of transmission of light through apertures under 
the assumption that the incident wave is multiplied by the aperture function and using 
the Fraunhofer approximation to determine the propagation of light in the free space 
beyond the aperture. The Fraunhofer approximation is valid if the propagation 
distance d between the aperture and observation planes is sufficiently large so that the 
Fresnel number NL = b2/Ad -=z 1, where b is the largest radial distance within the 
aperture. 

Assuming that the incident wave is a plane wave of intensity li traveling in the z 
direction SO that U(x, y) = Ii ‘I2 then f(x, y) = ~i1’2p(x, y). In the Fraunhofer approx- , 
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imation [see (4.2-l)I, 

where 

g(-cY> = I/i’h,,P(; ,$), (4.3-3) 

P(v,Py) = /, p(x, y) exp[P&x + “yY)] &dY 
-m 

is the Fourier transform of p(x, y) and h, = (j/Ad) exp( -jkd). The diffraction 
pattern is therefore 

cw9 = (A# yP($,-$)‘. (4.3-4) 

in sumh~ary: The Fraunhofm difbacticm &xx~ at the &nt (x, y) is proportional 
ta the squ’ared magriitude* of the F&.&r‘ transform’ of the aperture fun&on 
p(x, y) evaluated at the spatial frequen&s vx -‘x/M Bnd vr =tt -y/A&. 

EXERCISE 4.3- 1 

Fraunhofer Diffraction from a Rectangular Aperture. Verify that the Fraunhofer 
diffraction pattern from a rectangular aperture, of height and width 0, and D, respec- 
tively, observed at a distance d is 

Dxx DYY I(x,Y) = IOsinc2~sinc2~, (4.3-5) 

where I, = (DxD,/Ad)21, is the peak intensity and sine(x) = sin(rx)/(7rx). Verify that 
the first zeros of this pattern occur at x = *Ad/D, and y  = &Ad/D,, so that the angular 
divergence of the diffracted light is given by 

ox=+, 
X 

By=;. 
Y 

(4.3-6) 

I f  D, < D,, the diffraction pattern is wider in the y  direction than in the x direction, as 
illustrated in Fig. 4.3-3. 

EXERCISE 4.3-2 

Fraunhofer Diffraction from a Circular Aperture. Verify that the Fraunhofer diffrac- 
tion pattern from a circular aperture of diameter D (Fig. 4.3-4) is 

2J,( rDp/hd) 2 
1(x, Y) = 1, 

I rDp/Ad ’ 
p = (x2 + y2)1’2, (4.3-7) 
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Figure 4.3-3 Fraunhofer diffraction from a rectangular aperture. 
pattern has half-angular widths 8, = A/D, and 8, = A/D,. 

The central lobe of the 

Figure 4.3-4 The Fraunhofer diffraction pattern from a circular aperture produces the 
Airy pattern with the radius of the central disk subtending an angle 8 = 1.22A/D. 

where I, = (~D2/4Ad)2~i is the peak intensity and .I,(*) is the Bessel function of order 1. 
The Fourier transform of circularly symmetric functions is discussed in Appendix A, Sec. 
A.3. The circularly symmetric pattern (4.3-7), known as the Airy pattern, consists of a 
central disc surrounded by rings. Verify that the radius of the central disk, known as the 
Airy disk, is ps = 1.22Ad/D and subtends an angle 

(4.3-8) 
Half-Angle Subtended 

by the Airy Disk 

The Fraunhofer approximation is valid for distances d that are usually extremely 
large. They are satisfied in applications of long-distance free-space optical communica- 
tion such as laser radar (lidar) and satellite communication. However, as shown in Sec. 
4.2B, if a lens of focal length f is used to focus the diffracted light, the intensity pattern 
in the focal plane is proportional to the squared magnitude of the Fourier transform of 
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p(x, y) evaluated at vX = x/h f and vY = y/A f. The observed pattern is therefore 
identical to that obtained from (4.3-4), with the distance d replaced by the focal 
length f. 

EXERCISE 4.3-3 

Spot Size of a Focused Optical Beam. A beam of light is focused using a lens of focal 
length f  with a circular aperture of diameter D (Fig. 4.3-5). I f  the beam is approximated 
by a plane wave at points within the aperture, verify that the pattern of the focused spot is 

2JWWAf > 2 
q&Y) = 1, 1 ~Dp/Af ’ 

p = (x2 + y2)1’2, (4.3-9) 

where Z, is the peak intensity. Compare the radius of the focused spot, 

f 
ps = 1.22A-, 

D 
(4.3-10) 

to the spot size obtained when a Gaussian beam of waist radius IV, is focused by an ideal 
lens of infinite aperture [see (3.2-S)]. 

l.=Jf 
D 

Figure 4.3-5 
diameter D. 

Focusing of a plane wave transmitted through a circular aperture of 

*B. Fresnel Diffraction 

The theory of Fresnel diffraction is based on the assumption that the incident wave is 
multiplied by the aperture function p(x, y) and propagates in free space in accordance 
with the Fresnel approximation. If the incident wave is a plane wave traveling in the 
z-direction with intensity li, the complex amplitude immediately after the aperture is 
f(x, y) = p2 p(x, y). Using (4.1-14), the diffraction pattern 1(x, y) = jg(x, y)12 at a 
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Figure 4.3-6 The real and imaginary parts of exp(-jrX2). 

distance d is 

It is convenient to normalize all distances using (Ac#/~ as a unit of distance, so that 
X = x/(Ad)‘/’ and X’ = x’/(Ad>‘/2 are the normalized distances (and similarly for y 
and y’). Equation (4.3-11) then gives 

2 

I(X,Y) =Ii // p(X’,Y’)exp(-j7r[(X-X’)2+ (Y-Y)‘])dX’dY’ . (4.3-12) 
-w 

The integral in (4.3-12) is the convolution of p(X, Y) and exp[ -j,rr(X2 + Y2)]. The 
real and imaginary parts of exp( -jrX 2), cos TX 2 and sin 7r X 2, are plotted in Fig. 
4.3-6. They oscillate at an increasing frequency and their first lobes lie in the intervals 
(X ] < l/ fi and ] X 1 < 1, respectively. The total area under the function exp( - jrX 2, 
is 1, with the main contribution to the area coming from the first few lobes, since 
subsequent lobes cancel out. If a is the radius of the aperture, the radius of the 
normalized function p( X, Y) is a/(Ad) ‘I2 The result of the convolution, which . 
depends on the relative size of the two functions, is therefore governed by the Fresnel 
number N, = a2/hd. 

If the Fresnel number is large, the normalized width of the aperture a/(Ad>1/2 is 
much greater than the width of the main lobe, and the convolution yields approxi- 
mately the wider function p(X, Y). Under this condition the Fresnel diffraction 
pattern is a shadow of the aperture, as would be expected from ray optics. Note that 
ray optics is applicable in the limit A + 0, which corresponds to the limit N, -+ 00. In 
the opposite limit, when N, is small, the Fraunhofer approximation becomes applica- 
ble and the Fraunhofer diffraction pattern is obtained. 

EXAMPLE 4.3-l. Fresnel Diffraction from a Slit. Assume that the aperture is a slit of 
width D = 2~2, so that p(x, y) = 1 when 1x1 I a, and 0 elsewhere. The normalized 
coordinate is X = ~/(hd)‘/~ and 

a N’/2 
P(XY) = 

1, bh(hd)‘/z= F 
(4.3-13) 

0, elsewhere, 

where N, = a2/Ad is the Fresnel number. Substituting into (4.3-13, we obtain HX, I’) = 
ZilS(X)12, where 

&x) = /-$exp[ -~T(X - X’)‘] dX’ = jxTFexp( -j,rrX’2) dX’. (4.3-14) 
F F 
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N~=l0 

\ 

(6) 

Figure 4.3-7 Fresnel diffraction from a slit of width D = 2~2. (a) Shaded area is the 
geometrical shadow of the aperture. The dashed line is the width of the Fraunhofer 
diffracted beam. (b) Diffraction pattern at four axial positions marked by the arrows in 
(a) and corresponding to the Fresnel numbers N, = 10, 1,0.5, and 0.1. The shaded area 
represents the geometrical shadow of the slit. The dashed lines at 1x1 = (h/D)d represent 
the width of the Fraunhofer pattern in the far field. Where the dashed lines coincide with 
the edges of the geometrical shadow, the Fresnel number ZV, = a2/Ad = 0.5. 

This integral is usually written in terms of the Fresnel integrals 

C(x) = ~xcosqhr, S(x) = j;:sin$da, 

which are available in the standard computer mathematical libraries. 
The complex function g(X) may also be evaluated using Fourier-transform techniques. 

Since g(x) is the convolution of a rectangular function of width /Vi/’ and exp(-jrX2), its 
Fourier transform G(v,) a sinc(N, ‘j2v ) exp( jr,:) (see Table A.l-1 in Appendix A). Thus 
g(X) may be computed by determiningXthe inverse Fourier transform of G(v,). I f  N, * 1, 
the width of sinc(N, ‘12y ) is much narrower than the width of the first lobe of exp(jrvj) 
(see Fig. 4.3-6) so tha; G(v,) = sinc(Ni/2vx) and g(X) is the rectangular function 
representing the aperture shadow. 

The diffraction pattern from a slit is plotted in Fig. 4.3-7 for different Fresnel numbers 
corresponding to different distances d from the aperture. At very small distances (very 
large N,), the diffraction pattern is a perfect shadow of the slit. As the distance increases 
(NF decreases), the wave nature of light is exhibited in the form of small oscillations 
around the edges of the aperture (see also the diffraction pattern in Fig. 4.3-l). For very 
small N,, the Fraunhofer pattern described by (4.3-5) is obtained. This is a sine function 
with the first zero subtending an angle A/D = h/2a. 

EXAMPLE 4.3-2. Fresnel Diffraction from a Gaussian Aperture. If  the aperture 
function p(x, y) is the Gaussian function p(x, y) = exp[ --(x2 + y2)/Wez], the Fresnel 
diffraction equation (4.3-11) may be evaluated exactly by finding the convolution of 



134 FOURIER OPTICS 

exp[ -(x2 + y2)/W,f] with h,exp[-jv(x2 + y2)/Ad] using, for example, Fourier trans- 
form techniques (see Appendix A). The resultant diffraction pattern is 

where W2(d) = WU2 + 8id2 and 8,, = h/7rW0. 
The diffraction pattern is a Gaussian function of l/e2 half-width W(d). For small d, 

W(d) = We; but as d increases, W(d) increases and approaches W(d) = 8,d when d is 
sufficiently large for the Fraunhofer approximation to be applicable, so that the angle 
subtended by the Fraunhofer diffraction pattern is Bo. These results are illustrated in Fig. 
4.3-8, which is analogous to the illustration in Fig. 4.3-7 for diffraction from a slit. The 
wave diffracted from a Gaussian aperture is the Gaussian beam described in detail in 
Chap. 3. 

Figure 4.3-8 Fresnel diffraction pattern for a Gaussian aperture of m radius W, at 
distances d such that the parameter (r/2)W,‘/Ad, which is analogous to the Fresnel 
number NF in Fig. 4.3-7, is 10, 1, 0.5, and 0.1. These values correspond to W(d)/W, = 
1.001, 1.118, 1.414, and 5.099, respectively. The diffraction pattern is Gaussian at all 
distances. 
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4.4 IMAGE FORMATION 

An ideal image formation system is an optical system that replicates the distribution of 
light in one plane, the object plane, into another, the image plane. Since the optical 
transmission process is never perfect, the image is never an exact replica of the object. 
Aside from image magnification, there is also blur resulting from imperfect focusing 
and from the diffraction of optical waves. This section is devoted to the description of 
image formation systems and their fidelity. Methods of linear systems, such as the 
impulse-response function and the transfer function (Appendix B), are used to charac- 
terize image formation. A simple ray-optics approach is presented first, then a treat- 
ment based on wave optics is subsequently developed. 

A. Ray-Optics Description of Image Formation 

Consider an imaging system using a lens of focal length f at distances d, and d, from 
the object and image planes, respectively, as shown in Fig. 4.4-l. When l/d, + l/d, = 
l/f, the system is focused so that paraxial rays emitted from each point in the object 
plane reach a single corresponding point in the image plane. Within the ray theory of 
light, the imaging is “ideal,” with each point of the object producing a single point of 
the image. The impulse-response function of the system is an impulse function. 

Suppose now that the system is not in focus, as illustrated in Fig. 4.4-2, and assume 
that the focusing error is 

1 1 1 
EZ--+----* 

d2 dl f  
(4.4-l) 

A point in the object plane generates a patch of light in the image plane that is a 
shadow of the lens aperture. The distribution of this patch is the system’s impulse- 
response function. For simplicity, we shall consider an object point lying on the optical 
axis and determine the distribution of light h(x, y) it generates in the image plane. 

Assume that the plane of the focused image lies at a distance d,, satisfying the 
imaging equation l/d,, + l/d, = l/f. The shadow of a point on the edge of the 
aperture at a radial distance p is a point in the image plane with radial distance ps 
where the ratio p,/p = (d,, - d2)/dz0 = 1 - d,/d,, = 1 - dJl/f - l/d,) = 
1 - d,(l/d, - E) = ed2. If ~(x, y) is the aperture function, also called the pupil 

- 

Object 

Lens 

J* 

Image 

_,,;i-ia! 

Figure 4.4-l Rays in a focused imaging system. 
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(al 16) 

Figure 4.4-2 (a) Rays in a defocused imaging system. (b) The impulse-response function of an 
imaging system with a circular aperture of diameter D is a circle of radius ps = l d,D/2, where E 
is the focusing error. 

function [ p(x, y) = 1 for points inside the aperture, and 0 elsewhere], then h(x, y> is a 
scaled version of p(x, y) magnified by a factor p,/p = ed2, so that 

As an example, a circular aperture of diameter D corresponds to an impulse- 
response function confined to a circle of radius 

(4.4-3) 
Radius of Blur Spot 

as illustrated in Fig. 4.4-2. The radius ps of this “blur spot” is an inverse measure of 
resolving power and image quality. A small value of ps means that the system is 
capable of resolving fine details. Since ps is proportional to the aperture diameter D, 
the image quality may be improved by use of a small aperture. A small aperture 
corresponds to a reduced sensitivity of the system to focusing errors, so that it 
corresponds to an increased “depth of focus.” 

B. Spatial Filtering 

Consider now the two-lens imaging system illustrated in Fig. 4.4-3. This system, called 
the 4-f system, serves as a focused imaging system with unity magnification, as can be 
easily verified by ray tracing. 
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Object plane Fourier plane Image plane 

Figure 4.4-3 The 4-f imaging system. If an inverted coordinate system is used in the image 
plane, the magnification is unity. 

The analysis of wave propagation through this system becomes simple if we recog- 
nize it as a cascade of two Fourier-transforming subsystems. The first subsystem 
(between the object plane and the Fourier plane) performs a Fourier transform, and 
the second (between the Fourier plane and the image plane) performs an inverse 
Fourier transform since the coordinate system in the image plane is inverted (see 
Exercise 4.2-2). As a result, in the absence of an aperture the image is a perfect replica 
of the object. 

Let f(~, y) be the complex amplitude transmittance of a transparency placed in the 
object plane and illuminated by a plane wave exp(-jkz) traveling in the z direction, as 
illustrated in Fig. 4.4-4, and let g(x, y) be the complex amplitude in the image plane. 
The first lens system analyzes f(x, y) into its spatial Fourier transform and separates 
its Fourier components so that each point in the Fourier plane corresponds to a single 
spatial frequency. These components are then recombined by the second lens system 
and the object distribution is perfectly reconstructed. 

The 4-f imaging system can be used as a spatial filter in which the image g(x, y) is 
a filtered version of the object f(x, y). Since the Fourier components of f(~, y) are 
available in the Fourier plane, a mask may be used to adjust them selectively, blocking 
some components and transmitting others, as illustrated in Fig. 4.4-5. The Fourier 
component of f(x, y) at the spatial frequency (v,, vY) is located in the Fourier plane at 
the point x = hfvx, y = Af v,,. To implement a filter of transfer function X(V,, v,,), the 

Fourier plane 

Figure 4.4-4 The 4-f system performs a Fourier transform followed by an inverse Fourier 
transform, so that the image is a perfect replica of the object. 



138 FOURIER OPTICS 

Figure 4.4-5 Spatial filtering. The transparencies in the object and Fourier planes have 
complex amplitude transmittances f(x, y) and p(x, y). A plane wave traveling in the z direction 
is modulated by the object transparency, Fourier transformed by the first lens, multiplied by the 
transmittance of the mask in the Fourier plane and inverse Fourier transformed by the second 
lens. As a result, the complex amplitude in the image plane g(x, y) is a filtered version of 
f(~, y). The system has a transfer function ,‘IC’(v,, v,,) = p(hfv,, hfv,). 

complex amplitude transmittance p(x, y) of the mask must be proportional to 
~(x/Af, y/hf). Thus the transfer function of the filter realized by a mask of 
transmittance p(x, y) is 

x(vp v,> = P(~fV,, hfvy), (4.4-4) 

Transfer Function of the 4-f 
Spatial Filter With Mask 

Transmittance p(x, y) 

where we have ignored the phase factor j exp( -j2kf) associated with each Fourier 
transform operation [the argument of h, in (4.2-lo)]. The Fourier transforms G(v,, v,,) 
and F(v,, v,) of g(x, y) and f(x, y) are related by G(v,, v,,) = X(v,, v,)F(v,, v,,). 

This is a rather simple result. The transfer function has the same shape as the pupil 
function. The corresponding impulse-response function h(x, y) is the inverse Fourier 
transform of X(v,, vJ, 

1 x Y 
h(X?Y) = (nf)p hf’hf , 

( 1 
(4.4-5) 

where P(vx, v,,) is the Fourier transform of p(x, y). 

Examples of Spatial Filters 

. The ideal circularly symmetric low-pass filter has a transfer function X(vX, v,,) = 1, 
VT + vz < VT and X(v,, vY) = 0, otherwise. It passes spatial frequencies that are 
smaller than the cutoff frequency vS and blocks higher frequencies. This filter is 
implemented by a mask in the form of a circular aperture of diameter D, with 
D/2 = v,A f. For example, if D = 2 cm, A = 1 pm, and f  = 100 cm, the cutoff 
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Figure 4.4-6 Examples of object, mask, 
filter; (b) high-pass filter; (c) vertical-pass 
means the transmittance is unity. 

and filtered image for three spatial filters: (a) low-pass 
filter. Black means the transmittance is zero and white 

frequency (spatial bandwidth) I/, = D/2hf = 10 lines/mm. This filter eliminates 
spatial frequencies that are greater than 10 lines/mm, so that the smallest size of 
discernible detail in the filtered image is approximately 0.1 mm. 

. The high-pass jilter is the complement of the low-pass filter. It blocks low 
frequencies and transmits high frequencies. The mask is a clear transparency with 
an opaque central circle. The filter output is high at regions of large rate of 
change and small at regions of smooth or slow variation of the object. The filter is 
therefore useful for edge enhancement in image-processing applications. 

n The oertical-pass filter blocks horizontal frequencies and transmits vertical fre- 
quencies. Only variations in the x direction are transmitted. If the mask is a 
vertical slit of width D, the highest transmitted frequency is vY = (D/2)/A f. 

Examples of these filters and their effects on images are illustrated in Fig. 4.4-6. 

C. Single-Lens Imaging System 

We now consider image formation in the single-lens imaging system shown in Fig. 4.4-7 
using a wave-optics approach. We first determine the impulse-response function, and 
then derive the transfer function. 
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Obje 

Aperture plane 

Figure 4.4-7 Single-lens imaging system. 

Impulse-Response Function 
To determine the impulse-response function we consider an object composed of a 
single point (an impulse) on the optical axis at the point (O,O), and follow the emitted 
optical wave as it travels to the image plane. The resultant complex amplitude is the 
impulse-response function h(x, y). 

An impulse in the object plane produces in the aperture plane a spherical wave 
approximated by [see (4.1-13)] 

U(x,y) = h,exp -Jk [ *g$]. (4.4-6) 

where h t = (j/Ad,) exp( -jkd,). Upon crossing the aperture and the lens, U(x, y ) is 
multiplied by the pupil function p(x, y) and the lens quadratic phase factor 
exp[jk(x* + y2)/2f], becoming 

PC-6 Y>. (4.4-7) 

The resultant field U,(x, y) then propagates in free space a distance d,. In accordance 
with (4.1-14) it produces the amplitude 

h(x,y) = h, /y Ui(X’,y’)exp -j,(X-.‘.‘):td(y -“I* 
1 

dx’dy’, (4.4-8) 
--0D 2 

where h, = (j/Ad,) exp( -jkd,). Substituting from (4.4-6) and (4.4-7) into (4.4-S) and 
casting the integrals as a Fourier transform, we obtain 

h(x, Y> = hlh2 em (-.i~~)h( -& $)? 

where Pl(vx, vY) is the Fourier transform of the function 

(4.4-9) 

(4.4-10) 
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known as the generalized pupil function. The factor E is the focusing error given by 
(4.4-l). 

For a high-quality imaging system, the impulse-response function is a narrow 
function, extending only over a small range of values of x and y. If the phase factor 
r(x2 + y2)/Ad2 in (4.4-9) is much smaller than 1 for all x and y within this range, it 
can be neglected, so that 

(4.4-11) 
Impulse-Response 

F”nctio” 
where ho = h,h, is a constant of magnitude (l/hd,)(l/Ad,). It follows that the 
system’s impulse-response function is proportional to the Fourier transform of the 
generalized pupil function pr(x, y) evaluated at V, = x/Ad, and I/,, = y/Ad,. 

If the system is focused (E = 0), then pr(x, y) = p(x, y), and 

h(w) =ho(a;$-). (4.4-12) 

where P(v,, v,) is the Fourier transform of p(x, y). This result is similar to the 
corresponding result in (4.4-5) for the 4-f system. 

EXAMPLE 4.4-l. Impulse-Response Function of a Focused Imaging System with a 
Circular Aperture. If the aperture is a circle of diameter D so that p(x, y) = 1 if 
p = (x2 + yy* I D/2, and zero otherwise, then the impulse-response function is 

h(x, Y) = h(O, 0) 
~JI(~DP/W) 

rDp/Ad, ’ 
p = (x2 + y*)l’*, (4.4-13) 

and Ih(0, O>l = (rD2/4h2dld2). This is a circularly symmetric function whose cross section 
is shown in Fig. 4.4-8. It drops to zero at a radius ps = 1.22Ad2/D and oscillates slightly 
before it vanishes. The radius ps is therefore a measure of the size of the blur circle. I f  the 
system is focused at 00, dl = 00, d2 = f, and ps = 1.22AF,, where F# = f/D is the lens 

Figure 4.4-8 Impulse-response function of an imaging system with a circular aperture. 
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F-number. Thus systems of smaller F# (larger apertures) have better image quality. This 
assumes, of course, that the larger lens does not introduce geometrical aberrations. 

Transfer Function 
The transfer function of a linear system can only be defined when the system is shift 
invariant (see Appendix B). Evidently, the single-lens imaging system is not shift 
invariant since a shift A of a point in the object plane is accompanied by a different 
shift MA in the image plane, where M = -d,/d, is the magnification. 

The image is different from the object in two ways. First, the image is a magnified 
replica of the object, i.e., the point (x, y) of the object is located at a new point 
(Mx, My) in the image. Second, every point is smeared into a patch as a result of 
defocusing or diffraction. We can therefore think of image formation as a cascade of 
two systems- a system of ideal magnification followed by a system of blur, as depicted 
in Fig. 4.4-9. By its nature, the magnification system is shift variant. For points near the 
optical axis, the blur system is approximately shift invariant and therefore can be 
described by a transfer function. 

The transfer function X(V,, v,,) of the blur system is determined by obtaining the 
Fourier transform of the impulse-response function h(x, y) in (4.4-11). The result is 

WV,, v,) = &d,v,, h&v,), (4.4-14) 
Transfer Function 

ignored a constant phase where pl(x, y) is the generalized pupil function and we have 
factor exp( -j/cd,) exp( -j/Id,). If the system is focused, then 

(4.4-i 5) 

where p(x, y) is the pupil function. This result is identical to that obtained for the 4-f 
imaging system [see (4.4-4)]. If the aperture is a circle of diameter D, for example, then 

(b) 

Figure 4.4-9 The imaging system in (a) is regarded in (b) as a combination of an ideal imaging 
system with only magnification, followed by shift-invariant blur in which each point is blurred into 
a patch with a distribution equal to the impulse-response function. 
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Figure 4.4-10 Transfer function of a focused imaging system 
diameter D. The system has a spatial bandwidth us = D/2Ad,. 

with a circular aperture of 

the transfer function is constant within a circle of radius vs, where 

D 

y =2hd,’ S (4.4-16) 

and vanishes elsewhere, as illustrated in Fig. 4.4-10. 
If the lens is focused at infinity, i.e., d, = f, 

(4.4-l 7) 
Spatial Bandwidth 

where & = f/D is the lens F-number. For example, for an F-2 lens (F, = f/D = 2) 
and for A = 0.5 pm, V~ = 500 lines/mm. The frequency v/s is the spatial bandwidth, 
i.e., the highest spatial frequency that the imaging system can transmit. 

4.5 HOLOGRAPHY 

Holography involves the recording and reconstruction of optical waves. A hologram is a 
transparency containing a coded record of the optical wave. 

Consider a monochromatic optical wave whose complex amplitude in some plane, 
say the z = 0 plane, is U,<x, y). If, somehow, a thin optical element (call it a 
transparency) with complex amplitude transmittance t(~, y) equal to L&(x, y) were 
able to be made, it would provide a complete record of the wave. The wave could then 
be reconstructed simply by illuminating the transparency with a uniform plane wave of 
unit amplitude traveling in the z direction. The transmitted wave would have a 
complex amplitude in the z = 0 plane U(x, y) = 1 .t(~, y) = U,<x, y). The original 
wave would then be reproduced at all points in the z = 0 plane, and therefore 
reconstructed everywhere in the space z > 0. 

As an example, we know that a uniform plane wave traveling at an angle 8 with 
respect to the z axis in the x-z plane has a complex amplitude U,(x, y) = 
exp[ -jk sin8 x]. A record of this wave would be a transparency with complex ampli- 
tude transmittance t(~, y) = exp[ -jk sin8 x]. Such a transparency acts as a prism that 
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bends an incident plane 
ing the original wave. 

wave exp( - jkz) by an angle e (see Sec. 2.4B), thus reproduc- 

The question is how to make a transparency t(~, y) from the original wave U,<x, y). 
One key impediment is that optical detectors, including the photographic emulsions 
used to make transparencies, are responsive to the optical intensity, (U,(x, y)12, and are 
therefore insensitive to the phase arg{U,(x, y)}. Phase information is obviously impor- 
tant and cannot be disregarded, however. For example, if the phase of the oblique 
wave UO(x, y) = exp[ -jk sin8 X] were not recorded, neither would the direction of 
travel of the wave. To record the phase of U,<X, y), a code must be found that 
transforms phase into intensity. The recorded information could then be optically 
decoded in order to reconstruct the wave. 

The Holographic Code 
The holographic code is based on mixing the original wave (hereafter called the object 
wave) U0 with a known reference wave U, and recording their interference pattern in 
the z = 0 plane. The intensity of the sum of the two waves is photographically 
recorded and a transparency of complex amplitude transmittance t, proportional to the 
intensity, is made [Fig. 4.5-l(a)]. The transmittance is therefore given by 

t a lU, + Ur12 = lUJ2 + &I2 + Ur*Uo + U$J,*, 

= I, + I, + u,*u, + uruo*, 

= I, + I, + 2( IrIp cos[arg{W - arg{l/,}l, (4.5-l) 

where I, and I, are, respectively, the intensities of the reference wave and the object 
wave in the z = 0 plane. 

The transparency, called a hologram, clearly carries coded information pertinent to 
the magnitude and phase of the wave U,. In fact, as an interference pattern the 
transmittance t is highly sensitive to the difference between the phases of the two 
waves, as was shown in Sec. 2.5. 

To decode the information in the hologram and reconstruct the object wave, the 
reference wave U,. is again used to illuminate the hologram [Fig. 4.5-l(b)]. The result is 

Reference 

iologram 

v“ Object 

la) lb) 

Figure 4.5-l (a) A hologram is a transparency on which the interference pattern between the 
original wave (object wave) and a reference wave is recorded. (b) The original wave is recon- 
structed by illuminating the hologram with the reference wave. 
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a wave with complex amplitude 

u = dJ, a u, I, + u, I, + IrUo i- u,‘uo* (4.5-2) 

in the hologram plane z = 0. The third term on the right-hand side is the original wave 
multiplied by the intensity I, of the reference wave. If 1, is uniform (independent of x 
and y), this term constitutes the desired reconstructed wave. But it must be separated 
from the other three terms. The fourth term is a conjugated version of the original 
wave modulated by Ur2. The first two terms represent the reference wave, modulated 
by the sum of the intensities of the two waves. 

If the reference wave is selected to be a uniform plane wave propagating along the z 
axis, IfI exp(-jkz), then in the z = 0 plane U,.(x, y) = I:‘2 is a constant independent 
of x and y. Dividing (4.52) by U, = I:/2 gives 

I 
U(X, y) a Ir + I&, y) + 1,‘/2Uo(x, y) + P2Q*(X, Y)- (4.5-3) 

Reconstructed Wave 
in Plane of Hologram 

The significance of the various terms in (4.5-3), and the methods of extracting the 
original wave (the third term), are clarified by means of a number of examples. 

EXAMPLE 4.5-l. Ho/ogmm of an Oblique PIane Wave. If  the object wave is an 
oblique plane wave at angle 8 [Fig. 4.5-2(a)], U,,(x, y) = ZJ12 exp( -jk sin6 x), then (4.5-3) 
gives U(x, y) a Z, + Z, + (Z,Z,)‘/2 exp(-jk sin0 X) + (Z,Z,)‘/2 exp( jk sin0 x). Since the 
first two terms are constant, they correspond to a wave propagating in the z direction (the 
continuance of the reference wave). The third term corresponds to the original object 
wave, whereas the fourth term represents the conjugate wave, a plane wave traveling at an 
angle -8. The object wave is therefore separable from the other waves. In fact, this 
hologram is nothing but a recording of the interference pattern formed from two oblique 
plane waves at an angle 8 (Sec. 2SA). It serves as a sinusoidal diffraction grating that splits 
an incident reference wave into three waves at angles 0, 8, and -8 [see Fig. 4.5-2(b) and 
Sec. 2.4B]. 

Ib) 

Figure 4.5-2 The hologram of an oblique plane wave is a sinusoidal diffraction grating: 
(a) recording; (6) reconstruction. 
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EXAMPLE 4.5-2. Hologram of a Point Source. Here the object wave is a spherical 
wave originating at the point r. = (O,O, - d), as illustrated in Fig. 4.5-3, so that L/,(x, y) a 
exp( -jkIr - rol)/lr - rol, where r = (x, y, 0). The first term of (4.5-3) corresponds to a 
plane wave traveling in the z direction, whereas the third is proportional to the amplitude 
of the original spherical wave originating at (O,O, - d). The fourth term is proportional to 
the amplitude of the conjugate wave Q*(x, y) a exp(jklr - rol>/lr - rol, which is a 
converging spherical wave centered at the point (0, 0, d). The second term is proportional 
to l/lr - rJ2 and its corresponding wave therefore travels in the z direction with very 
small angular spread since its intensity varies slowly in the transverse plane. 

Refere 

l b)))i))) \ 
Object I 

Hologram 

l-----d- 
(a) 16) 

Figure 4.5-3 Hologram of a spherical wave originating from a point source: (a) 
recording; (b) reconstruction. The conjugate wave forms a real image of the point. 

Off-Axis Holography 
One means of separating the four components of the reconstructed wave is to ensure 
that they vary at well-separated spatial frequencies, so that they have well-separated 
directions. This form of spatial frequency multiplexing (see Sec. 4.1A) is assured if the 
object and reference waves are offset so that they arrive from well-separated directions. 

Assume that the object wave has a complex amplitude U,(x, y) = 
f(~, y) exp( -jk sin0 x). This is a wave of complex envelope f(x, y) modulated by a 
phase factor equal to that introduced by a prism with deflection angle 8. It is assumed 
that f(~, y) varies slowly so that its maximum spatial frequency v, corresponds to an 
angle 0, = sin - ’ Au, much smaller than 8. The object wave therefore has directions 
centered about the angle 0, as illustrated in Fig. 4.5-4. Equation (4.5-3) gives 

U(X, y) a I, + If-(x, y)l* + I,‘/*f( x, Y) ew( -jk sinW 

+ r,‘/*f*( x, y) exp( +jk sine x). 

The third term is evidently a replica of the object wave, which arrives from a 
direction at an angle 8. The presence of the phase factor exp( jk sin0 X) in the fourth 
term indicates that it is deflected in the - 8 direction. The first term corresponds to a 
plane wave traveling in the z direction. The second term, usually known as the 
ambiguity term, corresponds to a nonuniform plane wave in directions within a cone of 
small angle 28, around the z direction. The offset of the directions of the object and 
reference waves results in a natural angular separation of the object and conjugate 
waves from each other and from the other two waves if 8 > 38,, thus allowing the 
original wave to be recovered unambiguously. 
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., Object 

Reference 

CZject 

(a) 

Figure 4.5-4 Hologram of an off-axis object wave: (a) recording; 
wave is separated from both the reference and conjugate waves. 

(b) 

(b) reconstruction. The object 

An alternative method of reducing the effect of the ambiguity wave is to make the 
intensity of the reference wave much greater than that of the object wave. The 
ambiguity wave [second term of (4.53)] is then much smaller than the other terms since 
it involves only object waves; it is therefore relatively negligible. 

Fourier-Transform Holography 
The Fourier transform F(v~, vY) of a function f(x, y) may be computed optically by 
use of a lens (see Sec. 4.2). If f(x, y) is the complex amplitude in one focal plane of the 
lens, then F(x/Af, y/hf) is the complex amplitude in the other focal plane, where f 
is the focal length of the lens and A is the wavelength. Since the Fourier transform is 
usually a complex-valued function, it cannot be recorded directly. 

The Fourier transform F(x/hf, y/Af) may be recorded holographically by regard- 
ing it as an object wave, U,<x, y) = F(x/Af, y/Af), mixing it with a reference wave 
U&x, y), and recording the superposition as a hologram [Fig. 4.5-5(a)]. Reconstruction 
is achieved by illumination of the hologram with the reference wave as usual. The 
reconstructed wave may be inverse Fourier transformed using a lens so that the 
original function f(x, y) is recovered [Fig. 4.5-5(b)]. 

f Hologram 
t 

Hologram 

(a) lb) 

Figure 4.5-5 Hologram of a wave whose complex amplitude represents the Fourier transform 
of a function f(x, y): (a) recording; (b) reconstruction. 
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f (x,y) 

Hologram 

(a) lb) 

Figure 4.56 The Vander Lugt holographic filter. (a) A hologram of the Fourier transform of 
h(x, y) is recorded. (b) The Fourier transform of f(x, y) is transmitted through the hologram 
and inverse Fourier transformed by a lens. The result is a function gk Y) proportional to the 
convolution of fh, y) and h(x, Y). The overall process provides a spatial filter with impulse- 
response function h(x, y). 

Holographic Spatial Filters 
A spatial filter of transfer function x’(v,, vY) may be implemented by use of a 4-f 
optical system with a mask of complex amplitude transmittance p(x, y) = 
X(x/hf, y/hf) placed in the Fourier plane (see Sec. 4.4B). Since the transfer function 
Xb,, vv) is usually complex-valued, the mask transmittance p(x, y) has a phase 
component and is difficult to fabricate using conventional printing techniques. If the 
filter impulse-response function h( x, y ) is real-valued, however, a Fourier-transform 
hologram of h(x, y) may be created by holographically recording the Fourier transform 
uo(x, y) = X(x/Af, y/Af). 

Using the Fourier transform of the input f(x, y) as a reference, U,(x, y) = 
F(x/Af, y/Af), the hologram constructs the wave 

w, YW,(X, Y> = F(x/Af, Y/Af wXx/Af, Y/Af 1. 

The inverse Fourier transform of the reconstructed object wave, obtained with a lens of 
focal length f  as illustrated in Fig. 4.5-6(b), therefore yields a complex amplitude 
g(x, y) with a Fourier transform G(v,, vY> = X(vX, v,)F(v,, vY). Thus g(x, y) is the 
convolution of f(x, y) with h(x, y). The overall system, known as the Vander Lugt 
filter, performs the operation of convolution, which is the basis of spatial filtering. 

If the conjugate wave U,(x, y)U,*(x, y) = F(x/Af, y/Af)X*(x/Af, y/Af) is, in- 
stead, inverse Fourier transformed, the correlation, instead of the convolution, of the 
functions f  (x, y) and h(x, y) is obtained. The operation of correlation is useful in 
image-processing applications, including pattern recognition. 

The Holographic Apparatus 
An essential condition for the successful fabrication of a hologram is the availability of 
a monochromatic light source with minimal phase fluctuations. The presence of phase 
fluctuations results in the random shifting of the interference pattern and the washing 
out of the hologram. For this reason, a coherent light source (usually a laser) is a 
necessary part of the apparatus. The coherence requirements for the interference of 
light waves are discussed in Chap. 10. 

Figure 4.5-7 illustrates a typical experimental configuration used to record a holo- 
gram and reconstruct the optical wave scattered from the surface of a physical object. 
Using a beamsplitter, laser light is split into two portions, one is used as the reference 
wave, whereas the other is scattered from the object to form the object wave. The 
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Figure 4.57 Holographic recording (a) and reconstruction (b). 

optical path difference between the two waves should be as small as possible to ensure 
that the two beams maintain a nonrandom phase difference [the term arg{U,} - arg{U,} 
in (4.5-l)]. 

Since the interference pattern forming the hologram is composed of fine lines 
separated by distances of the order of h/sin 8, where 8 is the angular offset between 
the reference and object waves, the photographic film must be of high resolution and 
the system must not vibrate during the exposure. The larger 6, the smaller the 
distances between the hologram lines, and the more stringent these requirements are. 
The object wave is reconstructed when the recorded hologram is illuminated with the 
reference wave, so that a viewer sees the object as if it were actually there, with its 
three-dimensional character preserved. 

Volume Holography 
It has been assumed so far that the hologram is a thin planar transparency on which 
the interference pattern of the object and reference waves is recorded. We now 
consider recording the hologram in a relatively thick medium and show that this offers 
an advantage. Consider the simple case when the object and reference waves are plane 
waves with wavevectors k, and k,. The recording medium extends between the planes 
z = 0 and z = A, as illustrated in Fig. 4.5-S. The interference pattern is now a function 
of x, y, and z: 

1(x, y, z) = lIJ/2 exp( -jk;r) + lJ/2 exp( -jk;r)12 

= I, + IO + 2( I,.Zo)1’2 cos(k;r - k;r) 

= I, + I, + 2( IrIo)” cos(k;r), 

where k, = k, - k,. This is a sinusoidal pattern of period A = 2r/lk,] and with the 
surfaces of constant intensity normal to the vector k,. 

For example, if the reference wave points in the z direction and the object wave 
makes an angle 0 with the z axis, Ik,( = 2k sin(e/2) and the period is 

A 
A= 

2 sin( 8/2) ’ 

as illustrated in Fig. 4.5-8. 
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Figure 4.5-8 Interference pattern when the reference and object waves are plane waves. Since 
lk,l = lk,l = 27r/A and Ik,l = 27r/A, from the geometry of the vector diagram 27r/A = 
2(2~r/h)sin(f9/2), so that A = A/2sin(8/2). 

If recorded in an emulsion, this pattern serves as a thick diffraction grating, a 
volume hologram. The vector k, is called the grating vector. When illuminated with 
the reference wave as illustrated in Fig. 4.5-9, the parallel planes of the grating reflect 
the wave only when the Bragg condition sin C#I = A/211 is satisfied, where C#I is the 
angle between the planes of the grating and the incident reference wave (see Exercise 
2.53). In our case 4 = O/2, so that sin(f3/2) = A/211. In view of (4.54), the Bragg 
condition is indeed satisfied, so that the reference wave is indeed reflected. As evident 
from the geometry, the reflected wave is an extension of the object wave, so that the 
reconstruction process is successful. 

Suppose now that the hologram is illuminated with a reference wave of different 
wavelength h’. Evidently, the Bragg condition, sin(O/2) = A’/2A, will not be satisfied 
and the wave will not be reflected. It follows that the object wave is reconstructed only 
if the wavelength of the reconstruction source matches that of the recording source. If 
light with a broad spectrum (white light) is used as a reconstruction source, only the 
“correct” wavelength would be reflected and the reconstruction process would be 
successful. 

Figure 4.5-9 The refe 
wave is reconstructed. 

ence wave is Bragg reflected from the thick hologram and the object 
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Figure 4.510 Two geometries for recording and reconstruction of a volume hologram. (a) This 
hologram is reconstructed by use of a reversed reference wave; the reconstructed wave is a 
conjugate wave traveling in a direction opposite to the original object wave. (6) A reflection 
hologram is recorded with the reference and object waves arriving from opposite sides; the object 
wave is reconstructed by reflection from the grating. 

Although the recording process must be done with monochromatic light, the 
reconstruction can be achieved with white light. This provides a clear advantage in 
many applications of holography. Other geometries for recording and reconstruction of 
a volume hologram are illustrated in Fig. 4.510. 

Another type of hologram that may be viewed with white light is the rainbow 
hologram. This hologram is recorded through a narrow slit so that the reconstructed 
image, of course, also appears as if seen through a slit. However, if the wavelength of 
reconstruction differs from the recording wavelength, the reconstructed wave will 
appear to be coming from a displaced slit since a magnification effect will be intro- 
duced. If white light is used for reconstruction, the reconstructed wave appears as the 
object seen through many displaced slits, each with a different wavelength (color). The 
result is a rainbow of images seen through parallel slits. Each slit displays the object 
with parallax effect in the direction of the slit, but not in the orthogonal direction. 
Rainbow holograms have many commercial uses as displays. 
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4.1-2 

4.1-3 

4.2-l 

4.2-2 

4.2-3 

PROBLEMS 

Correspondence Between Harmonic Functions and Plane Waves. The complex 
amplitudes of a monochromatic wave of wavelength A in the z = 0 and z = d 
planes are f(x, y) and g(x, y), respectively. Assuming that d = 104A, use harmonic 
analysis to determine g(x, y) in the following cases: 
(a) f(x, Y) = 1; 
(b) f(x, y) = expK -j~+U(x + Y )I; 
(c) f(x, y) = coshx/2h); 
(4 f-(x, y) = cos2hy/2M; 
63) f(x, Y) = C, rect[(x/lOh) - 2m], m = 0, + 1, + 2,. . . , where rect(x) = 1 if 
1x1 I i and 0, otherwise. 
Describe the physical nature of the wave in each case. 

In Problem 4.1-1, if f(x, y) is a circularly symmetric function with a maximum 
spatial frequency of 200 lines/mm, determine the angle of the cone within which 
the wave directions are confined. Assume that A = 633 nm. 

Logarithmic Interconnection Map. A transparency of amplitude transmittance 
t(x, y) = exp[ -j2,4(x)] is illuminated with a uniform plane wave of wavelength 
A = 1 pm. The transmitted light is focused by an adjacent lens of focal length 
f  = 100 cm. What must 4(x) be so that the ray that hits the transparency at 
position x is deflected and focused to a position x’ = In(x) for all x > O? (Note 
that x and x’ are measured in millimeters.) I f  the lens is removed, how should 4(x) 
be modified so that the system performs the same function? This system may be 
used to perform a logarithmic coordinate transformation, as discussed in Chap. 21. 

Proof of the Lens Fourier-Transform Property. (a) Show that the convolution of 
f(x) and e&-J ‘rx2/hd) may be obtained in three steps: Multiply f(x) by 
exp( -jvx2/Ad); evaluate the Fourier transform of the product at the frequency 

= x/Ad; and multiply the result by exp(-jrx2/hd). 
$1 The Fou * rier transform system in Fig. 4.2-4 is a cascade of three systems-propa- 
gation a distance f  in free space, transmission through a lens of focal length f, and 
propagation a distance f in free space. Noting that propagation a distance d in free 
space is equivalent to convolution with exp( -jrx2/Ad) [see (4.1-14)], and using the 
result in (a), derive the lens’ Fourier transform equation (4.2-10). For simplicity 
ignore the y  dependence. 

Fourier Transform of Line Functions. A transparency of amplitude transmittance 
t(x, y) is illuminated with a plane wave of wavelength A = 1 pm and focused with a 
lens of focal length f  = 100 cm. Sketch the intensity distribution in the plane of the 
transparency and in the lens focal plane in the following cases (all distances are 
measured in mm): 
(a) dx, y) = Nx - Y); 
(b) t(x, y) = 6(x + a) + 6(x - a), a = 1 mm; 
(c) t(x, y) = S(x + a) + j6(x - a), a = 1 mm, 
where 6(m) is the delta function (see Appendix A, Sec. A.l). 

Design of an Optical Fourier-Transform System. A lens is used to display the 
Fourier transform of a two-dimensional function with spatial frequencies between 
20 and 200 lines/mm. If the wavelength of light is h = 488 nm, what should be the 
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focal length of the lens so that the highest and lowest 
separated by a distance of 9 cm in the Fourier plane? 

spatial frequencies are 

4.3-l Fraunhofer Diffraction from a Diffraction Grating. Derive an expression for the 
Fraunhofer diffraction pattern for an aperture made of M = 2L + 1 parallel slits 
of infinitesimal widths separated by equal distances a = lOA, 

p(x,y) = 5 6(x -ma). 
m= -L 

Sketch the pattern as a function of the observation angle 8 = x/d, where d is the 
observation distance. 

4.3-2 Fraunhofer Diffraction with an Oblique Incident Wave. The diffraction pattern 
from an aperture with aperture function p(x, y) is (l/Ad)21P(x/Ad, y/hd)12, 
where P(vX, v,,) is the Fourier transform of p(x, y) and d is the distance between 
the aperture and observation planes. What is the diffraction pattern when the 
direction of the incident wave makes a small angle 8, -=K 1, with the z-axis in the 
x-z plane? 

*4.3-3 Fresnel Diffraction from Two Pinholes. Show that the Fresnel diffraction pattern 
from two pinholes separated by a distance 2a, i.e., p(x, y) = [6(x - a) + 
8(x + a)]6(y), at an observation distance d is the periodic pattern, 1(x, y) = 
(2/Ad)2cos2(2rux/Ad). 

*4.3-4 Relation Between Fresnel and Fraunhofer Diffraction. Show that the Fresnel 
diffraction pattern of the aperture function p(x, y) is equal to the Fraunhofer 
diffraction pattern of the aperture function p(x, y) exp[ -jr(x2 + y2)/Ad]. 

4.4-l Blurring a Sinusoidal Grating. An object f(x, y) = cos2(27rx/a) is imaged by a 
defocused single-lens imaging system whose impulse-response function h(x, y) = 1 
within a square of width D, and = 0 elsewhere. Derive an expression for the 
distribution of the image g(x,O) in the x direction. Derive an expression for the 
contrast of the image in terms of the ratio D/a. The contrast = (max - min)/ 
(max + min), where max and min are the maximum and minimum values of g(x, 0). 

4.4-2 Image of a Phase Object. An imaging system 
h(x,y) = rect(xM(y). If the input wave is 

has an impulse-response function 

f(X,Y) = 

i 

exp jf 
( 1 

for x > 0 

ew 
( 1 

-jt for x 5 0, 

determine and sketch the intensity (g(x, y)12 of the output wave g(x, y). Verify 
that even though the intensity of the input wave I f(x, y>12 = 1, the intensity of the 
output wave is not uniform. 

4.4-3 Optical Spatial Filtering. Consider the spatial filtering system shown in Fig. 4.4-5 
with f = 1000 mm. The system is illuminated with a uniform plane wave of unit 
amplitude and wavelength A = low3 mm. The input transparency has amplitude 
transmittance f(x, y) and the mask has amplitude transmittance p(x, y). Write an 
expression relating the complex amplitude g(x, y) of light in the image plane to 
f(x, y) and p(x, y). Assuming that all distances are measured in mm, sketch g(x, 0) 
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in the following cases: 
(a) f(x, y) = 6(x - 5) and p(x, y) = rect(x); 
(b) f(x, y) = rect(x) and p(x, y) = sine(x). 
Determine p(x, y) such that g(x, y) = V:f(x, y), where VT2 = a2/dx2 + d2/dy2 is 
the transverse Laplacian operator. 

4.4-4 Optical Cross-Correlation. Show how a spatial filter may be used to perform the 
operation of cross-correlation (defined in Appendix A) between two images de- 
scribed by the real-valued functions f,(x, y) and f2(x, y). Under what conditions 
would the complex amplitude transmittances of the masks and transparencies used 
be real-valued? 

*4.4-5 Impulse-Response Function of a Severely Defocused System. Using wave optics, 
show that the impulse-response function of a severely defocused imaging system 
(one for which the defocusing error E is very large) may be approximated by 
h(x, y) = P(X/Ed2, Y/4), where p(x, y) is the pupil function. Hint: Use the 
method of stationary phase described on page 124 (proof 2) to evaluate the integral 
that results from the use of (4.4-11) and (4.4-10). Note that this is the same result 
predicted by the ray theory of light [see (4.4-2)]. 

4.4-6 Two-Point Resolution. (a) Consider the single-lens imaging system discussed in Sec. 
4.4C. Assuming a square aperture of width D, unit magnification, and perfect focus, 
write an expression for the impulse-response function h(x, y). 
(b) Determine the response of the system to an object consisting of two points 
separated by a distance b, i.e., 

f(x, Y) = K+(Y) + 8(x - W(y). 

(c) If  hd,/D = 0.1 mm, sketch the magnitude of the image g(x, 0) as a function of 
x when the points are separated by a distance b = 0.5, 1, and 2 mm. What is the 
minimum separation between the two points such that the image remains dis- 
cernible as two spots instead of a single spot, i.e., has two peaks. 

4.4-7 Ring Aperture. (a) A focused single-lens imaging system, with magnification A4 = 1 
and focal length f  = 100 cm has an aperture in the form of a ring 

a I (x2 + Y~)“~ 5 b, 

otherwise, 

where a = 5 mm and b = 6 mm. Determine the transfer function H(v,, vy) of the 
system and sketch its cross section H(vx, 0). The wavelength A = 1 pm. 
(b) If  the image plane is now moved closer to the lens so that its distance from the 
lens becomes d, = 25 cm, with the distance between the object plane and the lens 
d, as in (a), use the ray-optics approximation to determine the impulse-response 
function of the imaging system h(x, y) and sketch h(x, 0). 

4.5-l Holography with a Spherical Reference Wave. The choice of a uniform plane wave 
as a reference wave is not essential to holography; other waves can be used. 
Assuming that the reference wave is a spherical wave centered about the point 
(O,O, - d), determine the hologram pattern and examine the reconstructed wave 
when: 
(a) the object wave is a plane wave traveling at an angle 8,; 
(b) the object wave is a spherical wave centered at (-x0, 0, - d,). 
Approximate spherical waves by paraboloidal waves. 
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4.5-2 Optical Correlation. A transparency with an amplitude transmittance given by 
f(x, y) = fI(x - a, y) + f&x + a, y) is Fourier transformed by a lens and the 
intensity is recorded on a transparency (hologram). The hologram is subsequently 
illuminated with a reference wave and the reconstructed wave is Fourier trans- 
formed with a lens to generate the function g(x, y). Derive an expression relating 
g(x, y) to f,<x, y) and f&x, y). Show how the correlation of the two functions 
f,(x,y) and f2(x, y) may be determined with this system. 


